C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Graph theory

	Subject	Code: 4	4SC06GTC1	Branch:B.Sc.(Mathemat	ics)	
	Semeste	r: 6	Date :13/05/2016	Time : 2:30 To 5:30	Marks : 70	
	Instructio (1) (2) (3) (4)	ons: Use of l Instruct Draw ne Assume	Programmable calculator ions written on main answeat diagrams and figures suitable data if needed.	& any other electronic instrur wer book are strictly to be obe (if necessary) at right places.	nent is prohibited. yed.	
Q-1	a)	Atten Degre	npt the following question be of pendant vertex is	ons:		(14) (01)
	b)	(A) S An alternative than of (A) w	ternative sequence of ver once is called	tices and edges in which no ec -loon (D) path	lge is covered more	(01)
	c)	$\begin{array}{c} (h) \\ The \\ (A) \\ n \end{array}$	egree of each vertex in co 1-1 (B) $n+1$ (C) $2n$ (D	omplete graph K_n is) n		(01)
	d)	A ver (A) d	tex with minimum eccentiameter (B) centre (C	tricity is called) radius (D) none	_	(01)
	e)	By real (A) n	moving cut-set from the gould (B) connected (C)	given graph, it becomes disconnected (D) None	graph.	(01)
	f)	A gra (A) d	ph is if ther lisconnected (B) closed (re is a path between any two o (C) cycle (D) connected	f its vertices.	(01)
	g)	Defin	e: Parallel edges with illu	istration.		(02)
	h)	Defin	e: Spanning tree with illu	istration.		(02)
	i)	Defin	e: Fundamental Circuit			(02)
	j)	Draw	Petersen graph.			(02)
Atte	empt any	four qu	estions from Q-2 to Q-8	3		
Q-2	2	Atten	npt all questions			(14)

a)	State and prove first theorem of graph theory. Also prove that graph G must have	(07)
	even number of odd vertices.	
b)	A graph G is disconnected if and only if its vertices set V can be partitioned into	(07)

two non empty disjoint subsets V_1 and V_2 such that there exists no edges in G

Page 1 || 3

	whose one end point in V_1 and another end point in V_2 .	(14)
a)	Let <i>G</i> be a simple graph with <i>n</i> vertices and <i>k</i> components. Then prove that <i>G</i> can have at most $\frac{(n-k)(n-k+1)}{2}$ number of edges.	(14) (06)
b)	Let $G = (V, E)$ be a k –regular graph where k is an odd number then prove that number of edges in graph G is in multiple of k .	(06)
c)	What is the smallest integer n such that the complete graph K_n has at least 500 edges?	(02)
	Attempt all questions	(14)
a)	Explain Konisberg bridge problem.Solve it by using Euler's theorem.	(06)
b)	Let G be a connected graph. Then prove that G is an Euler graph if and only if each vertices in G is of even degree.	(06)
c)	AFind a fusion graph of the following graph byDfusing the vertices B and C.	(02)

Q-5 Attempt all questions

(14)

(14)

- **a**) Let G be a tree with n vertices. Then prove that G has (n 1) edges. (07)
- **b**) Let *n* be an odd number, $n \ge 3$. Then prove that there are exactly $\frac{n-1}{2}$ edgedisjoint Hamiltonian circuit in complete graph K_{n} . (07)

Q-6

Q-3

Q-4

Attempt all questions

a) Without drawing graph check whether the graph corresponding to following (07) adjacency matrix is connected or not.

$$X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

b) Let G be an graph. Then prove that G is tree if and only if there exists a unique (07) path between every pair of vertices in G.

Page 2 || 3

Q-7 Attempt all questions

(14) Find distance between every pair of vertices of G and eccentricity of every (06) a) vertex.

Prove that every tree has either one or two centers. (06) b) Give two examples of tree with 7 vertices. C) (02)

<i>c</i>)	Give two examples of tree with /
	Attempt all questions

Q-8

a)

	(14)
Write adjacency and incidence matrices of the	(06)
following graph:	

- If the number of vertices is n in binary tree then prove that the number of pendant b) (06) vertices is $\frac{n+1}{2}$.
- Define cut set and illustrate with graph. c)

(02)

